Alcohols

Dr. Neeta Sinha

Jamshedpur Cooperative College Jamshedpur

Outline

- Classification
- Nomenclature
- Synthesis
- Chemical Reaction

Classification

- Alcohols are defined as hydroxy derivatives of aliphatic hydrocarbons. Its general formula is R-OH, where R is alkyl group and -OH is functional group.
- Alcohols are classified as follow:
- Monohydric alcohol Alcohols having one –OH gr. e. g.
 CH₃OH, C₂H₅OH
- Dihydric alcohol Alcohols having two -OH grs. e.g.

CH₂OH

CH₂OH

Ethylene glycol

- Trihydric alcohol - Alcohols having three -OH gr. e.g.

CH₂OH

ı

CHOH

ı

CH₂OH Glycerol or Propane-1,2,3-triol.

- Monohydric alcohols are further classified as
- 1. Primary alcohol If –OH gr. is attached with primary carbon or one degree carbon atom e.g. CH₃OH, CH₃CH₂OH
- 2.Secondary alcohol If –OH gr. Is attached with secondary carbon or two degree carbon atom e.g.

CH₃
I
CH₃CHOH
Isopropyl alcohol

3. Tertiary alcohol – If –OH gr. Is attached with tertiary or three degree carbon atom. e.g.

 CH_3 I CH_3COH I CH_3 Tert. Butyl alcohol

Nomenclature

1. Common system – Alcohols are called alkyl alcohol, adding the word alcohol to the name of the alkyl group.

2. IUPAC system – In this system alcohols are called "ALKANOLS", replacing 'e' of corresponding alkane by suffix – ol. The longest chain containing –OH gr is selected as parent chain and numbered in such a way that carbon containing –OH gr gets the smallest number.

Synthesis

1. From aldehyde and ketone: By the process of reduction alcohols can be prepared from aldehydes and ketones.

$$H_2/Ni$$
 or Pt or Pd
$$LiAlH_4$$
 $CH_3CH_2CHO \longrightarrow CH_3CH_2CH_2OH$

$$Primary alcohol$$

$$H_2/Ni \text{ or Pt}$$
 $CH_3COCH_3 \xrightarrow{} CH_3CHOHCH_3$
Secondary alcohol

2. From carboxylic acid: By reducing acid with LiAlH4.

LiAlH₄ / dry ether

RCOOH
$$\longrightarrow$$
 RCH₂OH

LiAlH₄ / dry ether

CH₃CH₂CH₂COOH \longrightarrow CH₃CH₂CH₂CH₂OH

Synthesis continued

3. From ester: When esters are reduced with sodium in alcohol or LiAlH₄ / mixture of alcohols are obtained.

$$\frac{\text{Na/ C}_2\text{H}_5\text{OH}}{\text{or LiAlH}_4}$$
RCOOR'
$$\text{RCH}_2\text{OH} + \text{R'OH}$$

Properties

1. Boiling point of alcohols are higher than hydrocarbons of comparable molecular wt. because of the presence of inter molecular hydrogen bonding in molecules.

2. Alcohols are soluble in water because it forms inter molecular hydrogen bonding with water molecule.

Properties continued

3. Acidic nature – Alcohols are weak acid because it ionises to give alkoxide ion and hydrogen ion because hydrogen is attached to the highly electronegative oxygen atom. This is why alcohols react with metals like Na, K, Mg, etc.

$$2ROH + 2M \longrightarrow 2ROM + H_2$$

$$2C_2H_5OH + 2K \longrightarrow 2C_2H_5OK + H_2$$

4. Reaction with Grignard reagent – It reacts with Grignard reagent to form alkanes.

ROH + R'MgX
$$\longrightarrow$$
 R'H + MgXOR
CH₃OH + C₂H₅MgBr \longrightarrow C₂H₆ + CH₃MgBr

5. Reaction with acids – Alcohols react with carboxylic acid in presence of conc. Sulphuric acid to form esters.

RCOOH + R'OH
$$\longrightarrow$$
 RCOOR' + H2O
CH₃COOH + C₂H₅OH \longrightarrow CH₃COOC₂H₅ + H2O

6. Reaction with acid chloride and acid anhydride – alcohols react with acid chloride or anhydride to produce esters.

RCOCI + R'OH
$$\longrightarrow$$
 RCOOR' + HCI
(RCO)₂O + R'OH \longrightarrow R'COOR' + RCOOH

7. Dehydration of alcohol – Alcohols after dehydration with H_2SO_4 or H_3PO_4 or alumina or lewis acid produce alkenes.

$$CH_3CH_2OH \longrightarrow CH_2 = CH_2 + H_2O$$

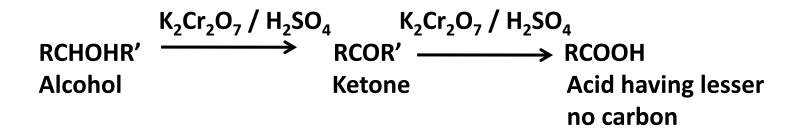
 $CH_3CHOHCH_3 \longrightarrow CH_3CH=CH_2 + H_2O$

8. Reaction with halogen acid – Alcohols reacts with halogen acids to give haloalkanes in presence of Lewis acid or sulphuric acid. The order of reactivity of halogen acids are HI>HBr>HCl, because iodide ion is better nucleophile than bromide and chloride ion.

$$CH_3OH + HCI \longrightarrow CH_3CI + H_2O$$

 $C_2H_5OH + HBr \longrightarrow C_2H_5Br + H_2O$

9. Reaction with phosphorus halides - Alcohol reacts with phosphorus halides to give alkyl halides.


ROH +
$$PCI_5$$
 \longrightarrow RCI + $POCI_3$ +HCI
3ROH + PCI_3 \longrightarrow 3RCI + H_3PO_3
CH₃OH +PBr₅ \longrightarrow CH₃Br + $POBr_3$ + HBr
3CH₃OH + PI_3 \longrightarrow 3CH₃I + H_3PO_3

10. Reaction with thionyl chloride – Alcohols react with thionyl chloride in presence of tertiary amine to give alkyl chlorides.

ROH +
$$SOCl_2$$
 \longrightarrow RCI + SO_2 + HCI
CH₃OH + $SOCl_2$ \longrightarrow CH₃CI + SO_2 + HCI

- 11. Oxidation reaction On oxidation different alcohols gives different product.
 - i) Primary alcohols

(ii) Secondary Alcohol

(iii) Tertiary Alcohol

$$K_2Cr_2O_7 / H_2SO_4 \qquad K_2Cr_2O_7 / H_2SO_4$$
 $R_3COH \longrightarrow R_2-CO \longrightarrow RCOOH$
Alcohol Ketone Acid

THANK YOU