HULTIPLE CHOICE QUESTIONS

1. Which is the correct IUPAC name for the following compound?

- (a) 4-Isopropyl-1,1-dimethyl-1-pentanol
- (b) 5-Isopropyl-1,1-dimethyl-2-hexanol
- (c) 1,1,4,5-Tetramethyl-1-hexanol
- (d) 2,5,6-Trimethyl-2-heptanol

Answer. (d)

2. What is the IUPAC name for the following structure?

(a) Cyclohexenol

- (b) 3-Cyclohexen-1-ol
- (c) 1-Cyclohexen-4-ol
- (d) 4-Cyclohexenol

Answer, (b)

3. Which of the following is/are secondary (2°) alcohols?

(a) only 3

(b) 2, 3 and 4

(c) only 2 and 4

(d) only I

Answer. (c)

4. What is the systematic name of tert-butyl alcohol?

- (a) 1-Methyl-2-propanol
- (b) 2-Methyl-3-butanol
- (c) 2-Methyl-2-butanol
- (d) 2-Methyl-2-propanol

Answer. (d)

5. Which of the following is a tertiary alcohol?

- (a) 2-Methylcyclohexanol
- (b) 1-Methylcyclohexanol
- (c) 3-Methylcyclohexanol
- (d) 2,2-Dimethylcyclohexanol

Answer. (b)

6. What type of alcohol is this?

(a) Primary (1°)

(b) Secondary (2°)

(c) Tertiary (3°)

(d) None of these

Answer. (c)

	7.	What atomic orbitals are used to form the C-O bond in an alcohol?						
	7.4	(a) an ent orbital of C and a p orbital of O						
		(b) an sp ³ orbital of C and an sp orbital of O						
		(c) an sp ³ orbital of C and an sp ³ orbital of O						
		(d) an sp ³ orbital of C and an sp ² orbital of O						
	4	(a) an sp orbital of C and an sp						
	Answe 8.	What kind of orbital do the nonbon	ding	electrons of the over				
оссир		What kind of oronal do to		oxygen in an				
occup.	,	(a) They occupy sp orbitals	(b)	They occupy p orbital				
		(c) They occupy sp ² orbitals	(d)	They occupy sp3 orbitals				
	Answe			orbitals.				
	9,	How large is the H-O-H bond angle in	wate	r ?				
		(a) larger than the sp^2 angle of 120.0°						
		(b) larger than the sp^3 angle of 109.5°						
		(c) smaller than the sp^3 angle of 109.5						
		(d) larger than the sp angle of 180.0°						
	Answe							
	10.	Which of the following intermolecular	force	is are present in alcoholos				
		(a) Dipole-dipole forces	(b)	Dipole-induced dipole forces				
		(c) Hydrogen bonding	(d)	All of the above				
	Answe		(/					
	11.	Which of the following compounds car	n form	hydrogen bonds between				
		(a) CH ₂ CH ₂ OCH ₂ CH ₃	(b)	CH ₁ CH ₂ CH ₃ Br				
		(c) CH ₂ CH ₂ CH ₂ OH		CH ₃ CH ₂ N(CH ₁) ₂				
	Answi		()					
	12.	Alcohols have higher boiling points	than a	alkanes of comparable molecula				
becau	se of			The state of the s				
		(a) hydrogen bonding	(b)	diaxial interactions				
		(c) steric strain	(d)	hyperconjugation				
		er. (a)						
	13.	Which of the following molecules has	the h	ighest boiling point?				
		(d) Butanol		Dimethylbutylamine				
	America	(c) Butane	(d)	Methyl ethyl ether				
Answer. (a) 14. The following compounds have similar to the following compounds have								
boilin	ig poir	The following compounds have simi	lar m	olecular weights. Which has the				
	Spon	(a) CH ₃ CHO						
		(c) CH ₃ OCH ₃		CH ₃ CH ₂ OH				
	Answ	er. (b)	(d)	CH ₃ CH ₂ CH ₃				
		Which of the following has the highes (a) CH ₃ -O-CH ₃						
		(c) CH ₃ -CH ₂ -CH ₃	(b)	CH ₃ -CH ₂ -OH				
	Answ	er. (b)	(d)	CH ₂ =CH-CH ₃				
	16.							
		6. Which of the following has the highest boiling point? (a) 1-Chlorobutane						
		(c) 2-Butene		Butane				
	Answ	er. (d)	(d)	1-Butanol				

1	Which of the following:	has the highest boiling point?					
	(iii) CH,OCH,CH,CH,C						
	(a) HOCH CH CH OH	(ii) Critica rije rijea rij					
A	HENCE, (C)	(d) CH ₂ OCH ₂ CH ₂ OH					
1	Which of the following:	compounds is the most soluble in water?					
	(a) Cyclopentyl alcoho	I water					
	(c) Cyclohexane	(a) Cycropentane					
A	nswee. (a)	(d) Cyclopentyl methyl ether					
3 (Which of the following	is the most soluble in water?					
	(a) CH ₂ CH ₂ CH ₃						
	(c) CHICHICHIOH	(b) CH ₃ CH ₂ OH					
A	nswer, (b)	(d) CH ₁ OCH ₁					
26	 Which of the following: 	compounds would you expect to be most soluble in water?					
	(a) CH ₂ Cl ₂	you expect to be most soluble in water?					
	(c) CH ₂ CH ₂ OH	C ₆ H ₁₂ (Cyclonexane)					
A	nswer. (c)	(d) $C_2H_5OC_2H_5$					
21	. Which reaction cannot l	No trend to					
	(a) addition of H.O' to	Which reaction cannot be used to prepare an alcohol? (a) addition of H ₃ O' to an alkene					
	(b) hydroboration of al	an aikene					
	(c) a Grignard reasent.	(c) a Grignard reagent with an aldehyde					
	(d) oxidation of ethers	with an aldehyde					
An	swer, (d)						
22.							
	(a) An alkyl halide.	1.7					
	(b) An alkane.						
	(c) A markovnikov ado	lition producing an alcohol.					
A.m.	(a) An anti-Markovniki swer. (d)	ov addition producing an alcohol.					
23.	and the						
43.	Acetone reacts with NaB	H ₄ , followed by treatment with dilute acid, to form:					
	(1)						
	wer, (c)	and addingen					
24.	Which species is oxidize	d in the following reaction?					
		CH ₃ CHO + LiAIH ₄ → CH ₃ CH ₂ OH					
	(a) CH ₃ CHO						
	(c) CH ₃ CH ₂ OH	(b) LiAlH ₄					
Ans	wer. (b)	(d) This is not a redox reaction.					
25.							
	(a) and the following re	eactions will form a primary alcohol?					
	(a) an aldehyde + a Grig	mard reagent					
	(b) a ketone + NH ₂ NH ₂ /	HO /heat					
	(c) an aldehyde + H ⁺ /H ₂	O					
	(d) an aldehyde + soding	m borohydride followed by H ⁺ /H ₂ O					
	144						
26.	Which of the following	compounds gives a secondary alcohol upon reaction with					
inylma	enesium bromide ? Assume	the usual acid workup					
	(a) Butyl formate						
	(c) Pentanal	(b) 3-Pentanone					
Ansv	ver. (c)	(d) Methyl butanoate					

	Which of the follow nexturn bromide?	ina compounds é	hier ner	give a tertiary alcoh	mt
27.	Which of the Runaw	ting tours			rabou tear
riselfrylmag	newigen brownide?	1	(1)	Ethyl benzoate	ALL STREET
	(a) 3-Methylpentar	ini	(1)	4-Heptanone	
	(c) 4,4-Dimethyley	Children and Children			
Asses	which of the followith LiAIH, followed by	Acres port BIV	e a 1° a	ilcohol as the main.	
28.	Which of the follow	ing these are govern		and the factor of	TEARIC DOLL
treatment w	ith LiAlH, followed by	y H ₃ O 7	(10)	CH;CH;CH;CO;H	
	(a) CH,CH,CH,CH	()	410.7	CH,CH,COCH,	
	(c) CH ₂ CH ₂ CH ₂ CO	CH,	(11)	cincinctoring	
Asses			V etc.) to produce		
29.	er. (st) Alcohols react with	active metals (N	a, r., e.	(c) nitrogen	E84
	(a) oxygen	(b) hydrogen		(c) nitrogen	(d) belon
Asses	76.0			- (A- (B))(B)	
30.	Primary alkyl alcoho	als react with thio	nyl chia	oride (SOCI ₂) to give	
	(a) primary alkyl ha	lides	(0)	secondary arkyrnat	ides
	(c) acid halides		(d)	no reaction	
A more	ve (a)				
31.	Thisayl chloride, SC	Cl ₂ , reacts with i	soprop	yl alcohol, (CH ₃) ₂ CH	OH, to ein
	(a) 2-Chloropropan		(b)	1-Chloropropane	Print
	(c) 2-Propanol		(d)	Acetone	
	(e) 2-1 (opanos				
	PHr, reacts with eth	anol to give			
34.	(a) Tribromoethane		(b)	Nromoethanol	
	(c) Bromoethane			(d) No reaction	
	rer. (c) The reaction of HBr	with 6-butyl alco	hol giv	C S	
33.		Willia Gurya area	(b)	an acid	
	(a) an alkane			a dibromide	
	(c) an alkyl bromide		(11)		
	er. (c)	nd alcohol with I	IClass of	oom temperature giv	*4
34.			(4)	t-butyl bromide	
	(a) t-butyl chloride		6	an alkene	
	(c) isobutyl chlorid	e	(es)	an arkene	
Answ	er. (a)			on of test buttered into	Accest Books I berenii
35.			HIVEISH	on of tert-butanol into	(a) Br ₅ NaOE
	(a) PBr ₃	(b) HBr		(c) NaBr	(11) 1315 1000
	er. (b)			stand into Lablarah	ntane in one stell
36.			ert i-bi	utanol into 1-chlorob	(d) CCl
	(a) SOCl ₂	(b) PCl ₃		(c) HCl	(11) con
	er. (d)				
37.			n react		(d) Hydroget
	(a) Ether	(b) Alcohol		(c) Water	(4) 11)
Answ	er. (c)				Wigot Oa
38.	Isopropyl alcohol, (C	H ₃) ₂ CHOH, rea	cts with	hot concentrated H ₂	(d) Propyse
	(a) Propane	(b) 2-Propano	Į.	(c) Propene	(21)
Answ	er. (c)				- 4 debydration
39.	er. (c) What is the major	product obtain	ed fro	m the acid-catalyz	ed den
1-methylcyc	clohexanol?				
	(a) methylcyclohex	ane	(b)	1-methylcyclohexen	ė.
	(c) 3-methyleyclohe	exene	(d)	2-methylcyclohexeno	2
Answ	er. (b)				

332 CHAPTER 12 5000 Solved Problems III

40.	Wh	at product is formed when 12.40				
Adviduation	7		mein	vicyclobexanol undergoes acid-catalyzed		
		1,2-Dimethylcyclohexene				
	663	2.2-Dimethylcyclohexene	(h)	2,3-Dimethylcyclohexene		
Amount			(a)	3-Dimethylcyclohexene		
	77	midsting of the con-		and the yestessextesse		
41.	1.190	oxidation of CH ₂ CH ₂ OH with acid a ketone	fic so	dium dichromata		
			(3)	ethyl alcohol		
	(0)	an aldehyde	(wh	an acid		
America						
42.	The	exidation of 1-propanol with PCC				
	(11)	an alcohol				
	(c)	a ketone	(5)	an aldehyde		
Answe	r. (h)		(a)	an acid		
43.						
4.71	Lal	oxidation of 1-propanol with chron an alcohol	nic ac	id yields		
	400	art and culton		an aldehyde		
		a ketone		an acid		
Answe						
44.	1 he	oxidation of 2-propanol with chron	nic ac	id vielde		
	(a)	an alcohol		an aldehyde		
	(c)	a ketone		an acid		
Answe	r. (c)		(41)	all acid		
45.	Wh	at compound is formed when others	i in term	ested-vist bose : .		
	(a)	Acetone	(L)	nated with PCC in dry methylene chloride?		
	(c)	Acetic acid		Acetaldehyde		
Answe			(a)	Ethyl chloride		
46.			ACC 100 ACC 100 ACC	Circumstant and promise		
chloride?		to should be to find when pro	pano	is treated with PCC in dry methylene		
	(a)	Propanoic acid	(b)	Propane		
	(c)	Propanal		Propanone		
Answe	r. (c)		()	· · · · · · · · · · · · · · · · · · ·		
47. (PCC)?	Wh	ich of the following compounds is	not	oxidized by pyridinium chlorochromate		
1100						
		2-Methyl-2-butanol	(b)	1-Pentanol		
		2-Pentanol	(d)	1,3-Propanediol		
Answei						
48.	To	distinguish among primary, second	ary, a	and tertiary alcohols, one would use the		
ionowing exp	perin	nental method.				
	(a)	Sandmeyer reaction	(b)	Ninhydrin test		
	(c)	Lucas test	(d)	Tollens' reagent		
Answer	r. (c)					
49.	The	Lucas test is used to distinguish sm	all (7	or fewer carbons) 1°, 2° and 3° alcohols.		
Which of the	o be	tested is added to a colution of anhy-	drous	ZnCl ₂ in conc. HCl at room temperature.		
Which of the following statements is not correct?						
		1°-alcohols dissolve, but do not rea		Alex Had ablaside		
	(0)	3°-alcohols react quickly to give an	inso	uble alkyl chioride.		
(c) 3°-alcohols rapidly dehydrate, and the gaseous alkene bubbles out of the test						

(d) 2°-alcohols dissolve and react slowly to give an insoluble alkyl chloride.

solution.

Answer. (c)

MULTIPLE CHOICE QUESTIONS

1. How many stereoisomers are possible for 2,3-butanediol?					
1.		b) 2		(c) 3	(d) 4
	(ex) s	(0.3 %			(4) 4
Answe	r, (c)	C2 2 busto	nedial C	H-CH(OH)CH(ЭНуси
2.	How many stereoisome	TS OI 2,3-0488	endion C	(c) 1	OTTICE ITS EXISTS
	(a) 4	(b) 3		(6)	(d) 2
Answi	re. (b)		Cinora	seina colubility	i
3.	Arrange the compoun	ds in the orde	n or mere	CH CH CH CH	on water (lowestfm
	L CH ₂ OH		11.	CH ₃ CH ₂ CH ₂ CH	CH ₂ OH
	III. CH;CH;CH;OH		IV.	HOCH2CH2CH2	CH ₂ CH ₂ OH
	(a) IV, III, II, I		(b)	11, 111, IV, I	
	(c) III. IV. II. I		(d)	Π, IV, III, I	
Anes	wer. (b)				
4.	Which of the following	ng has the hig	hest boili	ing point ?	
	(a) CH ₂ OCH ₂ CH ₂ CH ₃ CH			CH3OCH2CH2O	CH ₃
	(c) HOCH_CH_CH_CH_C	H	(d)	CH3OCH2CH2O	11
Ans	wer. (c)				
5.	The formation of eth	ylene glycol	(HOCH ₂)	CH ₂ OH) from et	hylene (H ₂ C=CH ₂)i
example o	of				
	(a) exidation		(b)	reduction	
	(c) dehydration		(d)	hydrogenation	
An	swer. (a)				0 0
6.	Lithium aluminium l	ydride (LiAll-	l ₄) reacts	with glyoxal, H-	C-C-H, to give
	(a) CH ₃ CO ₂ H		(b)	HOCH2CH2OH	
	(c) H ₂ C=CH ₂			HOCH ₂ CO ₂ H	
At	iswer. (b)				
	 Vicinal diols can be 	prepared by?			
	(a) oxidizing alkan	es with OsO4	(b)	oxidizing alkend	es with OsO4
	(c) reducing alkan	es with OsO ₄	(d)	reducing alkene	s with OsO4
	Marchen Commercial Fig. 5				

POLYHYDRIC ALCOHOLS On - Con. 347

- g. Diels are synthesized by reacting an alkene with
 - totaw (a)
- (b) borane
- (c) ozone
- (d) osmium tetroxide

ADVECT AND

- OsO₂ is often used to form diols from alkenes instead of KMnO₄ for what reason?

 OsO₂ is often used to form diols from alkenes instead of KMnO₄ for what reason?

 OsO₂ is often used to form diols from alkenes instead of KMnO₄ for what reason?

 OsO₂ is often used to form diols from alkenes instead of KMnO₄ for what reason?

 OsO₂ is often used to form diols from alkenes instead of KMnO₄ for what reason?

 OsO₂ is often used to form diols from alkenes instead of KMnO₄ for what reason?

 OsO₂ is often used to form diols from alkenes instead of KMnO₄ for what reason?

 OsO₂ is often used to form diols from alkenes instead of KMnO₄ for what reason?

 OsO₂ is often used to form diols from alkenes instead of KMnO₄ for what reason?

 OsO₂ is often used to form diols from alkenes instead of KMnO₄ for what reason?

 OsO₂ is often used to form diols from alkenes instead of KMnO₄ for what reason?

 OsO₂ is often used to form diols from the context of the context of
 - (a) It is less toxic.

(b) It gives higher yields.

(c) It costs less.

(d) It is a colorless liquid.

TREET (3)

- 18. Which is the major product from the reaction of propene with OnO₄/ROOH?
 - (a) 1-Propanol

(b) 2-Propanol

(c) 1,2-Propanediol

(d) 1,3-Propandiol

ABSWEL (c)

- II. Periodic acid (HIO₄) is used to ?
 - (a) oxidize aldehydes

(b) oxidize geminal diols

(c) oxidize vicinal diols

(d) oxidize ketones

Answer. (c)

- Treatment of a 1,2 diol (vicinal diol) with periodic acid results in
 - (a) cleavage to alkenes and alkanes.
 - (b) cleavage to carbon dioxide and water.
 - (c) cleavage to carboxylic acids and alcohols
 - (d) None of the above

Answer. (d). Periodic acid cleavage of vicinal diols gives aldehydes and ketones.